The plasticity-pathology continuum: defining a role for the LTP phenomenon.
نویسندگان
چکیده
Long-term potentiation (LTP) is the most widely studied form of neuroplasticity and is believed by many in the field to be the substrate for learning and memory. For this reason, an understanding of the mechanisms underlying LTP is thought to be of fundamental importance to the neurosciences, but a definitive linkage of LTP to learning or memory has not been achieved. Much of the correlational data used to support this claim is ambiguous and controversial, precluding any solid conclusion about the functional relevance of this often artificially induced form of neuroplasticity. In spite of this fact, the belief that LTP is a mechanism subserving learning and/or memory has become so dominant in the field that the investigation of other potential roles or actions of LTP-like phenomena in the nervous system has been seriously hindered. The multiple subtypes of the phenomena and the myriad molecules apparently involved in these subtypes raise the possibility that observed forms of LTP may represent very different types of modification events, with vastly different consequences for neural function and survival. A relationship between LTP and neuropathology is suggested in part by the fact that many of the molecular processes involved in LTP induction or maintenance are the same as those activated during excitotoxic events in neurons. In addition, some LTP subtypes are clearly induced by pathological stimuli, e.g., anoxic LTP. Such data raise the possibility that LTP is part of a continuum of types of neural modification, some leading to beneficial alterations such as may occur in learning and others that may be primarily pathological in nature, as in kindling and excitotoxicity. In this article, we introduce a plasticity-pathology continuum model that is designed to place the various forms of neural modification into proper context. In vitro and kindling receptor regulation studies are used to provide a basis for evaluating the specific synaptic/cellular response modification along the continuum of events, from beneficial to detrimental, that will be induced by a particular stimulus.
منابع مشابه
Effects of visual deprivation on synaptic plasticity of visual cortex
TBS (Theta Burst Stimulation) and PBs (Primed Bursts) are among effective tetanic stimulations for induction of LTP in hippocampus. Recent studies have indicated that TBS is effective in LTP induction in layer III synapses of neocortex, only if applied to layer IV. However, the possibility of neocortical LTP induction using PBs, has not yet been investigated. Sensory deprivation greatly influ...
متن کاملP24: The Role of Ionotropic Glutamate Receptors in the Induction of LTP
Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulation. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in excitatory synaptic tran...
متن کاملEffects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity
Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...
متن کاملP18: Signaling Pathway in Long-Term Potentiation
Synaptic plasticity in the central nervous system (CNS) of mammals has been discussed for many years. Several forms of synaptic plasticity of mammal’s CNS have been identified, such as those that occur in long-term potentiation (LTP). Different types of LTP have been observed in distinctive areas of the CNS of mammals. The hippocampus is one of the most important areas in the CNS that pla...
متن کاملInvolvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex
In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience research
دوره 58 1 شماره
صفحات -
تاریخ انتشار 1999